The discovery of allyltyrosine based tripeptides as selective inhibitors of the HIV-1 integrase strand-transfer reaction.
نویسندگان
چکیده
From library screening of synthetic antimicrobial peptides, an O-allyltyrosine-based tripeptide was identified to possess inhibitory activity against HIV-1 integrase (IN) exhibiting an IC50 value of 17.5 μM in a combination 3'-processing and strand transfer microtitre plate assay. The tripeptide was subjected to structure-activity relationship (SAR) studies with 28 peptides, incorporating an array of natural and non-natural amino acids. Resulting SAR analysis revealed the allyltyrosine residue was a key feature for IN inhibitory activity whilst incorporation of a lysine residue and extended hydrophilic chains bearing a terminal methyl ester was advantageous. Addition of hydrophobic aromatic moieties to the N-terminal of the scaffold afforded compounds with improved inhibitory activity. Consolidation of these functionalities lead to the development of the tripeptide 96 which specifically inhibited the IN strand-transfer reaction with an IC50 value of 2.5 μM.
منابع مشابه
Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...
متن کاملProgress in HIV-1 integrase inhibitors: A review of their chemical structure diversity
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...
متن کاملDihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore.
We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that...
متن کاملBasic Quinolinonyl Diketo Acid Derivatives as Inhibitors of HIV Integrase and their Activity against RNase H Function of Reverse Transcriptase
A series of antiviral basic quinolinonyl diketo acid derivatives were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of magnitude selectivity over 3'-processing. These strand transfer selective inhibitors also inhibited HIV-1 RNase H with low micromolar potencies. Molecular modeling studies based o...
متن کاملSelectivity for strand-transfer over 3′-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme–DNA interactions in the active site
Integrase strand transfer inhibitors (INSTIs) are highly effective against HIV infections. Co-crystal structures of the prototype foamy virus intasome have shown that all three FDA-approved drugs, raltegravir (RAL), elvitegravir and dolutegravir (DTG), act as interfacial inhibitors during the strand transfer (ST) integration step. However, these structures give only a partial sense for the limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Organic & biomolecular chemistry
دوره 14 25 شماره
صفحات -
تاریخ انتشار 2016